PNG  IHDRQgAMA a cHRMz&u0`:pQ<bKGDgmIDATxwUﹻ& ^CX(J I@ "% (** BX +*i"]j(IH{~R)[~>h{}gy)I$Ij .I$I$ʊy@}x.: $I$Ii}VZPC)I$IF ^0ʐJ$I$Q^}{"r=OzI$gRZeC.IOvH eKX $IMpxsk.쒷/&r[޳<v| .I~)@$updYRa$I |M.e JaֶpSYR6j>h%IRز if&uJ)M$I vLi=H;7UJ,],X$I1AҒJ$ XY XzI@GNҥRT)E@;]K*Mw;#5_wOn~\ DC&$(A5 RRFkvIR}l!RytRl;~^ǷJj اy뷦BZJr&ӥ8Pjw~vnv X^(I;4R=P[3]J,]ȏ~:3?[ a&e)`e*P[4]T=Cq6R[ ~ޤrXR Հg(t_HZ-Hg M$ãmL5R uk*`%C-E6/%[t X.{8P9Z.vkXŐKjgKZHg(aK9ڦmKjѺm_ \#$5,)-  61eJ,5m| r'= &ڡd%-]J on Xm|{ RҞe $eڧY XYrԮ-a7RK6h>n$5AVڴi*ֆK)mѦtmr1p| q:흺,)Oi*ֺK)ܬ֦K-5r3>0ԔHjJئEZj,%re~/z%jVMڸmrt)3]J,T K֦OvԒgii*bKiNO~%PW0=dii2tJ9Jݕ{7"I P9JKTbu,%r"6RKU}Ij2HKZXJ,妝 XYrP ެ24c%i^IK|.H,%rb:XRl1X4Pe/`x&P8Pj28Mzsx2r\zRPz4J}yP[g=L) .Q[6RjWgp FIH*-`IMRaK9TXcq*I y[jE>cw%gLRԕiFCj-ďa`#e~I j,%r,)?[gp FI˨mnWX#>mʔ XA DZf9,nKҲzIZXJ,L#kiPz4JZF,I,`61%2s $,VOϚ2/UFJfy7K> X+6 STXIeJILzMfKm LRaK9%|4p9LwJI!`NsiazĔ)%- XMq>pk$-$Q2x#N ؎-QR}ᶦHZډ)J,l#i@yn3LN`;nڔ XuX5pF)m|^0(>BHF9(cզEerJI rg7 4I@z0\JIi䵙RR0s;$s6eJ,`n 䂦0a)S)A 1eJ,堌#635RIgpNHuTH_SԕqVe ` &S)>p;S$魁eKIuX`I4춒o}`m$1":PI<[v9^\pTJjriRŭ P{#{R2,`)e-`mgj~1ϣLKam7&U\j/3mJ,`F;M'䱀 .KR#)yhTq;pcK9(q!w?uRR,n.yw*UXj#\]ɱ(qv2=RqfB#iJmmL<]Y͙#$5 uTU7ӦXR+q,`I}qL'`6Kͷ6r,]0S$- [RKR3oiRE|nӦXR.(i:LDLTJjY%o:)6rxzҒqTJjh㞦I.$YR.ʼnGZ\ֿf:%55 I˼!6dKxm4E"mG_ s? .e*?LRfK9%q#uh$)i3ULRfK9yxm܌bj84$i1U^@Wbm4uJ,ҪA>_Ij?1v32[gLRD96oTaR׿N7%L2 NT,`)7&ƝL*꽙yp_$M2#AS,`)7$rkTA29_Iye"|/0t)$n XT2`YJ;6Jx".e<`$) PI$5V4]29SRI>~=@j]lp2`K9Jaai^" Ԋ29ORI%:XV5]JmN9]H;1UC39NI%Xe78t)a;Oi Ҙ>Xt"~G>_mn:%|~ޅ_+]$o)@ǀ{hgN;IK6G&rp)T2i୦KJuv*T=TOSV>(~D>dm,I*Ɛ:R#ۙNI%D>G.n$o;+#RR!.eU˽TRI28t)1LWϚ>IJa3oFbu&:tJ*(F7y0ZR ^p'Ii L24x| XRI%ۄ>S1]Jy[zL$adB7.eh4%%누>WETf+3IR:I3Xה)3אOۦSRO'ٺ)S}"qOr[B7ϙ.edG)^ETR"RtRݜh0}LFVӦDB^k_JDj\=LS(Iv─aTeZ%eUAM-0;~˃@i|l @S4y72>sX-vA}ϛBI!ݎߨWl*)3{'Y|iSlEڻ(5KtSI$Uv02,~ԩ~x;P4ցCrO%tyn425:KMlD ^4JRxSهF_}شJTS6uj+ﷸk$eZO%G*^V2u3EMj3k%)okI]dT)URKDS 7~m@TJR~荪fT"֛L \sM -0T KfJz+nإKr L&j()[E&I ߴ>e FW_kJR|!O:5/2跌3T-'|zX ryp0JS ~^F>-2< `*%ZFP)bSn"L :)+pʷf(pO3TMW$~>@~ū:TAIsV1}S2<%ޟM?@iT ,Eūoz%i~g|`wS(]oȤ8)$ ntu`өe`6yPl IzMI{ʣzʨ )IZ2= ld:5+請M$-ї;U>_gsY$ÁN5WzWfIZ)-yuXIfp~S*IZdt;t>KūKR|$#LcԀ+2\;kJ`]YǔM1B)UbG"IRߊ<xܾӔJ0Z='Y嵤 Leveg)$znV-º^3Ւof#0Tfk^Zs[*I꯳3{)ˬW4Ւ4 OdpbZRS|*I 55#"&-IvT&/윚Ye:i$ 9{LkuRe[I~_\ؠ%>GL$iY8 9ܕ"S`kS.IlC;Ҏ4x&>u_0JLr<J2(^$5L s=MgV ~,Iju> 7r2)^=G$1:3G< `J3~&IR% 6Tx/rIj3O< ʔ&#f_yXJiގNSz; Tx(i8%#4 ~AS+IjerIUrIj362v885+IjAhK__5X%nV%Iͳ-y|7XV2v4fzo_68"S/I-qbf; LkF)KSM$ Ms>K WNV}^`-큧32ŒVؙGdu,^^m%6~Nn&͓3ŒVZMsRpfEW%IwdǀLm[7W&bIRL@Q|)* i ImsIMmKmyV`i$G+R 0tV'!V)֏28vU7͒vHꦼtxꗞT ;S}7Mf+fIRHNZUkUx5SAJㄌ9MqμAIRi|j5)o*^'<$TwI1hEU^c_j?Е$%d`z cyf,XO IJnTgA UXRD }{H}^S,P5V2\Xx`pZ|Yk:$e ~ @nWL.j+ϝYb퇪bZ BVu)u/IJ_ 1[p.p60bC >|X91P:N\!5qUB}5a5ja `ubcVxYt1N0Zzl4]7­gKj]?4ϻ *[bg$)+À*x쳀ogO$~,5 زUS9 lq3+5mgw@np1sso Ӻ=|N6 /g(Wv7U;zωM=wk,0uTg_`_P`uz?2yI!b`kĸSo+Qx%!\οe|އԁKS-s6pu_(ֿ$i++T8=eY; צP+phxWQv*|p1. ά. XRkIQYP,drZ | B%wP|S5`~́@i޾ E;Չaw{o'Q?%iL{u D?N1BD!owPHReFZ* k_-~{E9b-~P`fE{AܶBJAFO wx6Rox5 K5=WwehS8 (JClJ~ p+Fi;ŗo+:bD#g(C"wA^ r.F8L;dzdIHUX݆ϞXg )IFqem%I4dj&ppT{'{HOx( Rk6^C٫O.)3:s(۳(Z?~ٻ89zmT"PLtw䥈5&b<8GZ-Y&K?e8,`I6e(֍xb83 `rzXj)F=l($Ij 2*(F?h(/9ik:I`m#p3MgLaKjc/U#n5S# m(^)=y=đx8ŬI[U]~SцA4p$-F i(R,7Cx;X=cI>{Km\ o(Tv2vx2qiiDJN,Ҏ!1f 5quBj1!8 rDFd(!WQl,gSkL1Bxg''՞^ǘ;pQ P(c_ IRujg(Wz bs#P­rz> k c&nB=q+ؔXn#r5)co*Ũ+G?7< |PQӣ'G`uOd>%Mctz# Ԫڞ&7CaQ~N'-P.W`Oedp03C!IZcIAMPUۀ5J<\u~+{9(FbbyAeBhOSܳ1 bÈT#ŠyDžs,`5}DC-`̞%r&ڙa87QWWp6e7 Rϫ/oY ꇅ Nܶըtc!LA T7V4Jsū I-0Pxz7QNF_iZgúWkG83 0eWr9 X]㾮݁#Jˢ C}0=3ݱtBi]_ &{{[/o[~ \q鯜00٩|cD3=4B_b RYb$óBRsf&lLX#M*C_L܄:gx)WΘsGSbuL rF$9';\4Ɍq'n[%p.Q`u hNb`eCQyQ|l_C>Lb꟟3hSb #xNxSs^ 88|Mz)}:](vbۢamŖ࿥ 0)Q7@0=?^k(*J}3ibkFn HjB׻NO z x}7p 0tfDX.lwgȔhԾŲ }6g E |LkLZteu+=q\Iv0쮑)QٵpH8/2?Σo>Jvppho~f>%bMM}\//":PTc(v9v!gոQ )UfVG+! 35{=x\2+ki,y$~A1iC6#)vC5^>+gǵ@1Hy٪7u;p psϰu/S <aʸGu'tD1ԝI<pg|6j'p:tպhX{o(7v],*}6a_ wXRk,O]Lܳ~Vo45rp"N5k;m{rZbΦ${#)`(Ŵg,;j%6j.pyYT?}-kBDc3qA`NWQū20/^AZW%NQ MI.X#P#,^Ebc&?XR tAV|Y.1!؅⨉ccww>ivl(JT~ u`ٵDm q)+Ri x/x8cyFO!/*!/&,7<.N,YDŽ&ܑQF1Bz)FPʛ?5d 6`kQձ λc؎%582Y&nD_$Je4>a?! ͨ|ȎWZSsv8 j(I&yj Jb5m?HWp=g}G3#|I,5v珿] H~R3@B[☉9Ox~oMy=J;xUVoj bUsl_35t-(ՃɼRB7U!qc+x4H_Qo֮$[GO<4`&č\GOc[.[*Af%mG/ ňM/r W/Nw~B1U3J?P&Y )`ѓZ1p]^l“W#)lWZilUQu`-m|xĐ,_ƪ|9i:_{*(3Gѧ}UoD+>m_?VPۅ15&}2|/pIOʵ> GZ9cmíتmnz)yߐbD >e}:) r|@R5qVSA10C%E_'^8cR7O;6[eKePGϦX7jb}OTGO^jn*媓7nGMC t,k31Rb (vyܴʭ!iTh8~ZYZp(qsRL ?b}cŨʊGO^!rPJO15MJ[c&~Z`"ѓޔH1C&^|Ш|rʼ,AwĴ?b5)tLU)F| &g٣O]oqSUjy(x<Ϳ3 .FSkoYg2 \_#wj{u'rQ>o;%n|F*O_L"e9umDds?.fuuQbIWz |4\0 sb;OvxOSs; G%T4gFRurj(֍ڑb uԖKDu1MK{1^ q; C=6\8FR艇!%\YÔU| 88m)֓NcLve C6z;o&X x59:q61Z(T7>C?gcļxѐ Z oo-08jہ x,`' ҔOcRlf~`jj".Nv+sM_]Zk g( UOPyεx%pUh2(@il0ݽQXxppx-NS( WO+轾 nFߢ3M<;z)FBZjciu/QoF 7R¥ ZFLF~#ȣߨ^<쩡ݛкvџ))ME>ώx4m#!-m!L;vv#~Y[đKmx9.[,UFS CVkZ +ߟrY٧IZd/ioi$%͝ب_ֶX3ܫhNU ZZgk=]=bbJS[wjU()*I =ώ:}-蹞lUj:1}MWm=̛ _ ¾,8{__m{_PVK^n3esw5ӫh#$-q=A̟> ,^I}P^J$qY~Q[ Xq9{#&T.^GVj__RKpn,b=`żY@^՝;z{paVKkQXj/)y TIc&F;FBG7wg ZZDG!x r_tƢ!}i/V=M/#nB8 XxЫ ^@CR<{䤭YCN)eKOSƟa $&g[i3.C6xrOc8TI;o hH6P&L{@q6[ Gzp^71j(l`J}]e6X☉#͕ ׈$AB1Vjh㭦IRsqFBjwQ_7Xk>y"N=MB0 ,C #o6MRc0|$)ف"1!ixY<B9mx `,tA>)5ػQ?jQ?cn>YZe Tisvh# GMމȇp:ԴVuږ8ɼH]C.5C!UV;F`mbBk LTMvPʍϤj?ԯ/Qr1NB`9s"s TYsz &9S%U԰> {<ؿSMxB|H\3@!U| k']$U+> |HHMLޢ?V9iD!-@x TIî%6Z*9X@HMW#?nN ,oe6?tQwڱ.]-y':mW0#!J82qFjH -`ѓ&M0u Uγmxϵ^-_\])@0Rt.8/?ٰCY]x}=sD3ojަЫNuS%U}ԤwHH>ڗjܷ_3gN q7[q2la*ArǓԖ+p8/RGM ]jacd(JhWko6ڎbj]i5Bj3+3!\j1UZLsLTv8HHmup<>gKMJj0@H%,W΃7R) ">c, xixј^ aܖ>H[i.UIHc U1=yW\=S*GR~)AF=`&2h`DzT󑓶J+?W+}C%P:|0H܆}-<;OC[~o.$~i}~HQ TvXΈr=b}$vizL4:ȰT|4~*!oXQR6Lk+#t/g lԁߖ[Jڶ_N$k*". xsxX7jRVbAAʯKҎU3)zSNN _'s?f)6X!%ssAkʱ>qƷb hg %n ~p1REGMHH=BJiy[<5 ǁJҖgKR*倳e~HUy)Ag,K)`Vw6bRR:qL#\rclK/$sh*$ 6덤 KԖc 3Z9=Ɣ=o>X Ώ"1 )a`SJJ6k(<c e{%kϊP+SL'TcMJWRm ŏ"w)qc ef꒵i?b7b('"2r%~HUS1\<(`1Wx9=8HY9m:X18bgD1u ~|H;K-Uep,, C1 RV.MR5άh,tWO8WC$ XRVsQS]3GJ|12 [vM :k#~tH30Rf-HYݺ-`I9%lIDTm\ S{]9gOڒMNCV\G*2JRŨ;Rҏ^ڽ̱mq1Eu?To3I)y^#jJw^Ńj^vvlB_⋌P4x>0$c>K†Aļ9s_VjTt0l#m>E-,,x,-W)سo&96RE XR.6bXw+)GAEvL)͞K4$p=Ũi_ѱOjb HY/+@θH9޼]Nԥ%n{ &zjT? Ty) s^ULlb,PiTf^<À] 62R^V7)S!nllS6~͝V}-=%* ʻ>G DnK<y&>LPy7'r=Hj 9V`[c"*^8HpcO8bnU`4JȪAƋ#1_\ XϘHPRgik(~G~0DAA_2p|J묭a2\NCr]M_0 ^T%e#vD^%xy-n}-E\3aS%yN!r_{ )sAw ڼp1pEAk~v<:`'ӭ^5 ArXOI驻T (dk)_\ PuA*BY]yB"l\ey hH*tbK)3 IKZ򹞋XjN n *n>k]X_d!ryBH ]*R 0(#'7 %es9??ښFC,ՁQPjARJ\Ρw K#jahgw;2$l*) %Xq5!U᢯6Re] |0[__64ch&_}iL8KEgҎ7 M/\`|.p,~`a=BR?xܐrQ8K XR2M8f ?`sgWS%" Ԉ 7R%$ N}?QL1|-эټwIZ%pvL3Hk>,ImgW7{E xPHx73RA @RS CC !\ȟ5IXR^ZxHл$Q[ŝ40 (>+ _C >BRt<,TrT {O/H+˟Pl6 I B)/VC<6a2~(XwV4gnXR ϱ5ǀHٻ?tw똤Eyxp{#WK qG%5],(0ӈH HZ])ג=K1j&G(FbM@)%I` XRg ʔ KZG(vP,<`[ Kn^ SJRsAʠ5xՅF`0&RbV tx:EaUE/{fi2;.IAwW8/tTxAGOoN?G}l L(n`Zv?pB8K_gI+ܗ #i?ޙ.) p$utc ~DžfՈEo3l/)I-U?aԅ^jxArA ΧX}DmZ@QLےbTXGd.^|xKHR{|ΕW_h] IJ`[G9{).y) 0X YA1]qp?p_k+J*Y@HI>^?gt.06Rn ,` ?);p pSF9ZXLBJPWjgQ|&)7! HjQt<| ؅W5 x W HIzYoVMGP Hjn`+\(dNW)F+IrS[|/a`K|ͻ0Hj{R,Q=\ (F}\WR)AgSG`IsnAR=|8$}G(vC$)s FBJ?]_u XRvύ6z ŨG[36-T9HzpW̞ú Xg큽=7CufzI$)ki^qk-) 0H*N` QZkk]/tnnsI^Gu't=7$ Z;{8^jB% IItRQS7[ϭ3 $_OQJ`7!]W"W,)Iy W AJA;KWG`IY{8k$I$^%9.^(`N|LJ%@$I}ֽp=FB*xN=gI?Q{٥4B)mw $Igc~dZ@G9K X?7)aK%݅K$IZ-`IpC U6$I\0>!9k} Xa IIS0H$I H ?1R.Чj:4~Rw@p$IrA*u}WjWFPJ$I➓/6#! LӾ+ X36x8J |+L;v$Io4301R20M I$-E}@,pS^ޟR[/s¹'0H$IKyfŸfVOπFT*a$I>He~VY/3R/)>d$I>28`Cjw,n@FU*9ttf$I~<;=/4RD~@ X-ѕzἱI$: ԍR a@b X{+Qxuq$IЛzo /~3\8ڒ4BN7$IҀj V]n18H$IYFBj3̵̚ja pp $Is/3R Ӻ-Yj+L;.0ŔI$Av? #!5"aʄj}UKmɽH$IjCYs?h$IDl843.v}m7UiI=&=0Lg0$I4: embe` eQbm0u? $IT!Sƍ'-sv)s#C0:XB2a w I$zbww{."pPzO =Ɔ\[ o($Iaw]`E).Kvi:L*#gР7[$IyGPI=@R 4yR~̮´cg I$I/<tPͽ hDgo 94Z^k盇΄8I56^W$I^0̜N?4*H`237}g+hxoq)SJ@p|` $I%>-hO0eO>\ԣNߌZD6R=K ~n($I$y3D>o4b#px2$yڪtzW~a $I~?x'BwwpH$IZݑnC㧄Pc_9sO gwJ=l1:mKB>Ab<4Lp$Ib o1ZQ@85b̍ S'F,Fe,^I$IjEdù{l4 8Ys_s Z8.x m"+{~?q,Z D!I$ϻ'|XhB)=…']M>5 rgotԎ 獽PH$IjIPhh)n#cÔqA'ug5qwU&rF|1E%I$%]!'3AFD/;Ck_`9 v!ٴtPV;x`'*bQa w I$Ix5 FC3D_~A_#O݆DvV?<qw+I$I{=Z8".#RIYyjǪ=fDl9%M,a8$I$Ywi[7ݍFe$s1ՋBVA?`]#!oz4zjLJo8$I$%@3jAa4(o ;p,,dya=F9ً[LSPH$IJYЉ+3> 5"39aZ<ñh!{TpBGkj}Sp $IlvF.F$I z< '\K*qq.f<2Y!S"-\I$IYwčjF$ w9 \ߪB.1v!Ʊ?+r:^!I$BϹB H"B;L'G[ 4U#5>੐)|#o0aڱ$I>}k&1`U#V?YsV x>{t1[I~D&(I$I/{H0fw"q"y%4 IXyE~M3 8XψL}qE$I[> nD?~sf ]o΁ cT6"?'_Ἣ $I>~.f|'!N?⟩0G KkXZE]ޡ;/&?k OۘH$IRۀwXӨ<7@PnS04aӶp.:@\IWQJ6sS%I$e5ڑv`3:x';wq_vpgHyXZ 3gЂ7{{EuԹn±}$I$8t;b|591nءQ"P6O5i }iR̈́%Q̄p!I䮢]O{H$IRϻ9s֧ a=`- aB\X0"+5"C1Hb?߮3x3&gşggl_hZ^,`5?ߎvĸ%̀M!OZC2#0x LJ0 Gw$I$I}<{Eb+y;iI,`ܚF:5ܛA8-O-|8K7s|#Z8a&><a&/VtbtLʌI$I$I$I$I$I$IRjDD%tEXtdate:create2022-05-31T04:40:26+00:00!Î%tEXtdate:modify2022-05-31T04:40:26+00:00|{2IENDB`Mini Shell

HOME


Mini Shell 1.0
DIR:/opt/alt/python311/lib64/python3.11/__pycache__/
Upload File :
Current File : //opt/alt/python311/lib64/python3.11/__pycache__/fractions.cpython-311.opt-1.pyc
�

�fp����dZddlmZddlZddlZddlZddlZddlZdgZej	j
Zej	jZ
ejdejejz��ZGd�dej��ZdS)z/Fraction, infinite-precision, rational numbers.���DecimalN�Fractiona�
    \A\s*                                  # optional whitespace at the start,
    (?P<sign>[-+]?)                        # an optional sign, then
    (?=\d|\.\d)                            # lookahead for digit or .digit
    (?P<num>\d*|\d+(_\d+)*)                # numerator (possibly empty)
    (?:                                    # followed by
       (?:/(?P<denom>\d+(_\d+)*))?         # an optional denominator
    |                                      # or
       (?:\.(?P<decimal>\d*|\d+(_\d+)*))?  # an optional fractional part
       (?:E(?P<exp>[-+]?\d+(_\d+)*))?      # and optional exponent
    )
    \s*\Z                                  # and optional whitespace to finish
c�l��eZdZdZdZd.dd��fd�Zed���Zed	���Zd
�Z	d/d�Z
ed
���Zed���Z
d�Zd�Zd�Zd�Zeeej��\ZZd�Zeeej��\ZZd�Zeeej��\ZZd�Zeeej��\Z Z!d�Z"ee"ej#��\Z$Z%d�Z&ee&e'��\Z(Z)d�Z*ee*ej+��\Z,Z-d�Z.d�Z/d�Z0d�Z1d�Z2ej3fd�Z4d�Z5d �Z6d!�Z7d0d"�Z8d#�Z9d$�Z:d%�Z;d&�Z<d'�Z=d(�Z>d)�Z?d*�Z@d+�ZAd,�ZBd-�ZC�xZDS)1ra]This class implements rational numbers.

    In the two-argument form of the constructor, Fraction(8, 6) will
    produce a rational number equivalent to 4/3. Both arguments must
    be Rational. The numerator defaults to 0 and the denominator
    defaults to 1 so that Fraction(3) == 3 and Fraction() == 0.

    Fractions can also be constructed from:

      - numeric strings similar to those accepted by the
        float constructor (for example, '-2.3' or '1e10')

      - strings of the form '123/456'

      - float and Decimal instances

      - other Rational instances (including integers)

    ��
_numerator�_denominatorrNT��
_normalizec����tt|���|��}|���t|��tur||_d|_|St|tj	��r|j
|_|j|_|St|ttf��r#|���\|_|_|St|t���r/t �|��}|�t%d|z���t	|�d��pd��}|�d��}|rt	|��}n�d}|�d��}|rB|�dd	��}d
t+|��z}||zt	|��z}||z}|�d��}	|	r't	|	��}	|	dkr	|d
|	zz}n	|d
|	zz}|�d
��dkr|}n�t-d���t|��tcxurt|��urnnnbt|tj	��r9t|tj	��r|j
|jz|j
|jz}}nt-d���|dkrt/d|z���|r(t1j||��}
|dkr|
}
||
z}||
z}||_||_|S)a�Constructs a Rational.

        Takes a string like '3/2' or '1.5', another Rational instance, a
        numerator/denominator pair, or a float.

        Examples
        --------

        >>> Fraction(10, -8)
        Fraction(-5, 4)
        >>> Fraction(Fraction(1, 7), 5)
        Fraction(1, 35)
        >>> Fraction(Fraction(1, 7), Fraction(2, 3))
        Fraction(3, 14)
        >>> Fraction('314')
        Fraction(314, 1)
        >>> Fraction('-35/4')
        Fraction(-35, 4)
        >>> Fraction('3.1415') # conversion from numeric string
        Fraction(6283, 2000)
        >>> Fraction('-47e-2') # string may include a decimal exponent
        Fraction(-47, 100)
        >>> Fraction(1.47)  # direct construction from float (exact conversion)
        Fraction(6620291452234629, 4503599627370496)
        >>> Fraction(2.25)
        Fraction(9, 4)
        >>> Fraction(Decimal('1.47'))
        Fraction(147, 100)

        N�z Invalid literal for Fraction: %r�num�0�denom�decimal�_��
�expr�sign�-z2argument should be a string or a Rational instancez+both arguments should be Rational instanceszFraction(%s, 0))�superr�__new__�type�intrr	�
isinstance�numbers�Rational�	numerator�denominator�floatr�as_integer_ratio�str�_RATIONAL_FORMAT�match�
ValueError�group�replace�len�	TypeError�ZeroDivisionError�math�gcd)�clsrr r�self�mrr�scaler�g�	__class__s           ��0/opt/alt/python311/lib64/python3.11/fractions.pyrzFraction.__new__>s-���>�X�s�#�#�+�+�C�0�0�����I���#�%�%�"+���$%��!����I�w�'7�8�8�(
:�"+�"5���$-�$9��!����I��w�'7�8�8�#
:�5>�5O�5O�5Q�5Q�2����!2����I�s�+�+�
:�$�*�*�9�5�5���9�$�%G�%.�&/�0�0�0�������� 5�#�6�6�	�����(�(���4�"%�e�*�*�K�K�"#�K��g�g�i�0�0�G��-�")�/�/�#�r�":�":�� "�C��L�L� 0��$-��$5��G���$D�	�#�u�,���'�'�%�.�.�C��4�!�#�h�h���!�8�8�%��S��0�I�I�'�2��t�8�3�K��7�7�6�?�?�c�)�)�!*�
�I�� �!9�:�:�:��)�_�_��
8�
8�
8�
8�t�K�'8�'8�
8�
8�
8�
8�
8����G�$4�5�5�	2��{�G�$4�5�5�	2��#�k�&=�=��%�	�(=�=�#�I�I�
�1�2�2�
2��!���#�$5�	�$A�B�B�B��	����K�0�0�A��Q����B���!�O�I��A��K�#���'�����c	��t|tj��r||��St|t��s/t	|j�d|�dt
|��j�d����||����S)z�Converts a finite float to a rational number, exactly.

        Beware that Fraction.from_float(0.3) != Fraction(3, 10).

        z%.from_float() only takes floats, not � (�))rr�Integralr!r*�__name__rr")r.�fs  r4�
from_floatzFraction.from_float�s����a��)�*�*�	A��3�q�6�6�M��A�u�%�%�	A�� �\�\�\�1�1�1�d�1�g�g�.>�.>�.>�@�A�A�
A��s�A�&�&�(�(�)�)r5c	� �ddlm}t|tj��r|t|����}n?t||��s/t
|j�d|�dt|��j�d����||�	���S)zAConverts a finite Decimal instance to a rational number, exactly.rrz).from_decimal() only takes Decimals, not r7r8)
rrrrr9rr*r:rr")r.�decrs   r4�from_decimalzFraction.from_decimal�s���	$�#�#�#�#�#��c�7�+�,�,�	9��'�#�c�(�(�#�#�C�C��C��)�)�	9������s�s�s�D��I�I�$6�$6�$6�8�9�9�
9��s�C�(�(�*�*�+�+r5c��|j|jfS)z�Return the integer ratio as a tuple.

        Return a tuple of two integers, whose ratio is equal to the
        Fraction and with a positive denominator.
        r�r/s r4r"zFraction.as_integer_ratio�s�����!2�3�3r5�@Bc��|dkrtd���|j|krt|��Sd\}}}}|j|j}}	||z}|||zz}	|	|krn|||||zz|	f\}}}}||||zz
}}�0||z
|z}
t||
|zz||
|zz��}t||��}t	||z
��t	||z
��kr|S|S)aWClosest Fraction to self with denominator at most max_denominator.

        >>> Fraction('3.141592653589793').limit_denominator(10)
        Fraction(22, 7)
        >>> Fraction('3.141592653589793').limit_denominator(100)
        Fraction(311, 99)
        >>> Fraction(4321, 8765).limit_denominator(10000)
        Fraction(4321, 8765)

        r
z$max_denominator should be at least 1)rr
r
r)r&r	rr�abs)
r/�max_denominator�p0�q0�p1�q1�n�d�a�q2�k�bound1�bound2s
             r4�limit_denominatorzFraction.limit_denominator�s��@�Q����C�D�D�D����/�/��D�>�>�!�#���B��B���� 1�1��	��1��A��A�b�D��B��O�#�#����R��"��W�b�0�N�B��B���a��!��e�q�A�
	��R�
�"�$���"�Q�r�T�'�2�a��d�7�+�+���"�b�!�!���v��}����V�D�[�!1�!1�1�1��M��Mr5c��|jS�N)r�rLs r4rzFraction.numerators
���|�r5c��|jSrS)r	rTs r4r zFraction.denominators
���~�r5c�@�|jj�d|j�d|j�d�S)z
repr(self)�(z, r8)r3r:rr	rAs r4�__repr__zFraction.__repr__	s0��#�~�6�6�6�#�����0A�0A�0A�C�	Cr5c�b�|jdkrt|j��S|j�d|j��S)z	str(self)r
�/)r	r#rrAs r4�__str__zFraction.__str__s7�����!�!��t��'�'�'�"�o�o�o�t�/@�/@�A�Ar5c������fd�}d�jzdz|_�j|_��fd�}d�jzdz|_�j|_||fS)a�Generates forward and reverse operators given a purely-rational
        operator and a function from the operator module.

        Use this like:
        __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)

        In general, we want to implement the arithmetic operations so
        that mixed-mode operations either call an implementation whose
        author knew about the types of both arguments, or convert both
        to the nearest built in type and do the operation there. In
        Fraction, that means that we define __add__ and __radd__ as:

            def __add__(self, other):
                # Both types have numerators/denominator attributes,
                # so do the operation directly
                if isinstance(other, (int, Fraction)):
                    return Fraction(self.numerator * other.denominator +
                                    other.numerator * self.denominator,
                                    self.denominator * other.denominator)
                # float and complex don't have those operations, but we
                # know about those types, so special case them.
                elif isinstance(other, float):
                    return float(self) + other
                elif isinstance(other, complex):
                    return complex(self) + other
                # Let the other type take over.
                return NotImplemented

            def __radd__(self, other):
                # radd handles more types than add because there's
                # nothing left to fall back to.
                if isinstance(other, numbers.Rational):
                    return Fraction(self.numerator * other.denominator +
                                    other.numerator * self.denominator,
                                    self.denominator * other.denominator)
                elif isinstance(other, Real):
                    return float(other) + float(self)
                elif isinstance(other, Complex):
                    return complex(other) + complex(self)
                return NotImplemented


        There are 5 different cases for a mixed-type addition on
        Fraction. I'll refer to all of the above code that doesn't
        refer to Fraction, float, or complex as "boilerplate". 'r'
        will be an instance of Fraction, which is a subtype of
        Rational (r : Fraction <: Rational), and b : B <:
        Complex. The first three involve 'r + b':

            1. If B <: Fraction, int, float, or complex, we handle
               that specially, and all is well.
            2. If Fraction falls back to the boilerplate code, and it
               were to return a value from __add__, we'd miss the
               possibility that B defines a more intelligent __radd__,
               so the boilerplate should return NotImplemented from
               __add__. In particular, we don't handle Rational
               here, even though we could get an exact answer, in case
               the other type wants to do something special.
            3. If B <: Fraction, Python tries B.__radd__ before
               Fraction.__add__. This is ok, because it was
               implemented with knowledge of Fraction, so it can
               handle those instances before delegating to Real or
               Complex.

        The next two situations describe 'b + r'. We assume that b
        didn't know about Fraction in its implementation, and that it
        uses similar boilerplate code:

            4. If B <: Rational, then __radd_ converts both to the
               builtin rational type (hey look, that's us) and
               proceeds.
            5. Otherwise, __radd__ tries to find the nearest common
               base ABC, and fall back to its builtin type. Since this
               class doesn't subclass a concrete type, there's no
               implementation to fall back to, so we need to try as
               hard as possible to return an actual value, or the user
               will get a TypeError.

        c���t|ttf��r�||��St|t��r�t|��|��St|t��r�t	|��|��St
SrS)rrrr!�complex�NotImplemented)rL�b�fallback_operator�monomorphic_operators  ��r4�forwardz-Fraction._operator_fallbacks.<locals>.forwardes�����!�c�8�_�-�-�
&�+�+�A�q�1�1�1��A�u�%�%�
&�(�(��q���1�5�5�5��A�w�'�'�
&�(�(�����Q�7�7�7�%�%r5�__c�^��t|tj��r�||��St|tj��r&�t	|��t	|����St|tj��r&�t
|��t
|����StSrS)rrr�Realr!�Complexr^r_)r`rLrarbs  ��r4�reversez-Fraction._operator_fallbacks.<locals>.reverseqs�����!�W�-�.�.�
&�+�+�A�q�1�1�1��A�w�|�,�,�
&�(�(��q���5��8�8�<�<�<��A�w��/�/�
&�(�(�����W�Q�Z�Z�@�@�@�%�%r5�__r)r:�__doc__)rbrarcrhs``  r4�_operator_fallbackszFraction._operator_fallbackss�����`	&�	&�	&�	&�	&�	&� �"3�"<�<�t�C���.�6���		&�		&�		&�		&�		&�		&�!�#4�#=�=��D���.�6������r5c�h�|j|j}}|j|j}}tj||��}|dkrt	||z||zz||zd���S||z}|||zz||zz}tj||��}	|	dkrt	|||zd���St	||	z|||	zzd���S)za + br
Fr
�rr r,r-r�
rLr`�na�da�nb�dbr2�s�t�g2s
          r4�_addz
Fraction._add�������a�m�B����a�m�B���H�R�������6�6��B��G�b�2�g�-�r�B�w�5�I�I�I�I��!�G���"��'�N�R�!�V�#��
�X�a��^�^��
��7�7��A�q�2�v�%�8�8�8�8���R���b�B�h��E�B�B�B�Br5c�h�|j|j}}|j|j}}tj||��}|dkrt	||z||zz
||zd���S||z}|||zz||zz
}tj||��}	|	dkrt	|||zd���St	||	z|||	zzd���S)za - br
Fr
rmrns
          r4�_subz
Fraction._sub�rwr5c��|j|j}}|j|j}}tj||��}|dkr
||z}||z}tj||��}|dkr
||z}||z}t	||z||zd���S)za * br
Fr
rm)rLr`rorprqrr�g1rus        r4�_mulz
Fraction._mul�s�����a�m�B����a�m�B��
�X�b�"�
�
��
��6�6��2�I�B��2�I�B�
�X�b�"�
�
��
��6�6��2�I�B��2�I�B���R���b��U�;�;�;�;r5c��|j|j}}|j|j}}tj||��}|dkr
||z}||z}tj||��}|dkr
||z}||z}||z||z}	}|	dkr||	}	}t	||	d���S)za / br
rFr
rm)
rLr`rorprqrrr{rurJrKs
          r4�_divz
Fraction._div�s�����a�m�B����a�m�B��
�X�b�"�
�
��
��6�6��2�I�B��2�I�B�
�X�b�"�
�
��
��6�6��2�I�B��2�I�B��B�w��R��1���q�5�5��2��r�q�A���1��/�/�/�/r5c�@�|j|jz|j|jzzS)za // b�rr �rLr`s  r4�	_floordivzFraction._floordivs����a�m�+�����1L�M�Mr5c��|j|j}}t|j|z||jz��\}}|t|||z��fS)z(a // b, a % b))r �divmodrr)rLr`rprr�div�n_mods      r4�_divmodzFraction._divmodsI�����
�B���A�K�"�,�b�1�;�.>�?�?�
��U��H�U�B��G�,�,�,�,r5c�j�|j|j}}t|j|z|j|zz||z��S)za % b)r rr)rLr`rprrs    r4�_modz
Fraction._mods6�����
�B�����r�)�a�k�B�.>�?��b��I�I�Ir5c��t|tj��r�|jdkr�|j}|dkr"t|j|z|j|zd���S|jdkr$t|j|z|j|zd���St|j|z|j|zd���St|��t|��zSt|��|zS)z�a ** b

        If b is not an integer, the result will be a float or complex
        since roots are generally irrational. If b is an integer, the
        result will be rational.

        r
rFr
)	rrrr rrrr	r!)rLr`�powers   r4�__pow__zFraction.__pow__s���a��)�*�*�	!��}��!�!�����A�:�:�#�A�L�E�$9�$%�N�e�$;�/4�6�6�6�6��\�Q�&�&�#�A�N�u�f�$<�$%�L�U�F�$:�/4�6�6�6�6�$�a�n�_�%��$?�&'�l�]��v�$=�/4�6�6�6�6��Q�x�x�5��8�8�+�+���8�8�q�=� r5c��|jdkr|jdkr
||jzSt|tj��rt|j|j��|zS|jdkr
||jzS|t|��zS)za ** br
r)	r	rrrrrrr r!)r`rLs  r4�__rpow__zFraction.__rpow__;s����>�Q���1�<�1�#4�#4����$�$��a��)�*�*�	=��A�K���7�7�1�<�<��>�Q������$�$��E�!�H�H�}�r5c�:�t|j|jd���S)z++a: Coerces a subclass instance to FractionFr
�rrr	rTs r4�__pos__zFraction.__pos__Is�����a�n��G�G�G�Gr5c�<�t|j|jd���S)z-aFr
r�rTs r4�__neg__zFraction.__neg__Ms�����
�q�~�%�H�H�H�Hr5c�T�tt|j��|jd���S)zabs(a)Fr
)rrDrr	rTs r4�__abs__zFraction.__abs__Qs#����A�L�)�)�1�>�e�L�L�L�Lr5c�|�|jdkr||j|jz��S||j|jz��S)zint(a)rr)rL�_indexs  r4�__int__zFraction.__int__UsF���<�!����6�Q�\�M�Q�^�;�<�=�=�=��6�!�,�!�.�8�9�9�9r5c�X�|jdkr|j|jzS|j|jzS)z
math.trunc(a)rrrTs r4�	__trunc__zFraction.__trunc__\s2���<�!����l�]�a�n�4�5�5��<�1�>�1�1r5c� �|j|jzS)z
math.floor(a)r�rTs r4�	__floor__zFraction.__floor__cs���{�a�m�+�+r5c�$�|j|jzS)zmath.ceil(a)r�rTs r4�__ceil__zFraction.__ceil__gs���+����.�/�/r5c�Z�|�Pt|j|j��\}}|dz|jkr|S|dz|jkr|dzS|dzdkr|S|dzSdt|��z}|dkr t	t||z��|��St	t||z��|z��S)z?round(self, ndigits)

        Rounds half toward even.
        N�r
rr)r�rr rDr�round)r/�ndigits�floor�	remainder�shifts     r4�	__round__zFraction.__round__ls���
�?�%�d�n�d�6F�G�G��E�9��1�}�t�/�/�/����Q���!1�1�1��q�y� ����a������q�y� ��C��L�L� ���Q�;�;��E�$��,�/�/��7�7�7��E�$��,�/�/�%�7�8�8�8r5c��	t|jdt��}ttt	|j����|z��}n#t$r
t}YnwxYw|jdkr|n|}|dkrdn|S)z
hash(self)���r���)�powr	�_PyHASH_MODULUS�hashrDrr&�_PyHASH_INF)r/�dinv�hash_�results    r4�__hash__zFraction.__hash__�s���	<��t�(�"�o�>�>�D�(��c�$�/�2�2�3�3�d�:�;�;�E�E��'�	 �	 �	 ��E�E�E�	 ����(�/�Q�.�.���U�F���r�\�\�r�r�v�-s�A�A#�"A#c���t|��tur|j|ko
|jdkSt	|t
j��r |j|jko|j|jkSt	|t
j	��r|j
dkr|j}t	|t��rGtj|��stj|��rd|kS||�|��kSt"S)za == br
r�)rrrr	rrrrr rg�imag�realr!r,�isnan�isinfr<r_r�s  r4�__eq__zFraction.__eq__�s�����7�7�c�>�>��<�1�$�<���1�)<�<��a��)�*�*�	5��L�A�K�/�4��N�a�m�3�
5��a���)�)�	�a�f��k�k���A��a����
	"��z�!�}�}�
,��
�1�
�
�
,��a�x���A�L�L��O�O�+�+�"�!r5c�`�t|tj��r&||j|jz|j|jz��St|t��rStj	|��stj
|��r|d|��S|||�|����StS)acHelper for comparison operators, for internal use only.

        Implement comparison between a Rational instance `self`, and
        either another Rational instance or a float `other`.  If
        `other` is not a Rational instance or a float, return
        NotImplemented. `op` should be one of the six standard
        comparison operators.

        r�)
rrrrr r	rr!r,r�r�r<r_)r/�other�ops   r4�_richcmpzFraction._richcmp�s����e�W�-�.�.�	;��2�d�o��(9�9��'�%�/�9�;�;�
;��e�U�#�#�	"��z�%� � �
8�D�J�u�$5�$5�
8��r�#�u�~�~�%��r�$����� 6� 6�7�7�7�!�!r5c�B�|�|tj��S)za < b)r��operator�ltr�s  r4�__lt__zFraction.__lt__�����z�z�!�X�[�)�)�)r5c�B�|�|tj��S)za > b)r�r��gtr�s  r4�__gt__zFraction.__gt__�r�r5c�B�|�|tj��S)za <= b)r�r��ler�s  r4�__le__zFraction.__le__�r�r5c�B�|�|tj��S)za >= b)r�r��ger�s  r4�__ge__zFraction.__ge__�r�r5c�*�t|j��S)za != 0)�boolrrTs r4�__bool__zFraction.__bool__�s���A�L�!�!�!r5c�,�|j|j|jffSrS)r3rr	rAs r4�
__reduce__zFraction.__reduce__�s������$�2C� D�E�Er5c�v�t|��tkr|S|�|j|j��SrS�rrr3rr	rAs r4�__copy__zFraction.__copy__��1����:�:��!�!��K��~�~�d�o�t�/@�A�A�Ar5c�v�t|��tkr|S|�|j|j��SrSr�)r/�memos  r4�__deepcopy__zFraction.__deepcopy__�r�r5)rN)rBrS)Er:�
__module__�__qualname__rj�	__slots__r�classmethodr<r?r"rQ�propertyrr rXr[rkrvr��add�__add__�__radd__ry�sub�__sub__�__rsub__r|�mul�__mul__�__rmul__r~�truediv�__truediv__�__rtruediv__r��floordiv�__floordiv__�
__rfloordiv__r�r��
__divmod__�__rdivmod__r��mod�__mod__�__rmod__r�r�r�r�r��indexr�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r��
__classcell__)r3s@r4rr&s����������(/�I�h�$�h�h�h�h�h�h�h�T�*�*��[�*��	,�	,��[�	,�4�4�4�5�5�5�5�n����X������X��C�C�C�
B�B�B�i �i �i �^C�C�C�,�+�D�(�,�?�?��G�X�C�C�C�,�+�D�(�,�?�?��G�X�<�<�<�,�+�D�(�,�?�?��G�X�0�0�0�$!4� 3�D�(�:J� K� K��K��N�N�N�#6�"5�i��AR�"S�"S��L�-�-�-�-�2�1�'�6�B�B��J��J�J�J�
,�+�D�(�,�?�?��G�X�!�!�!�<���H�H�H�I�I�I�M�M�M�#�.�:�:�:�:�2�2�2�,�,�,�0�0�0�
9�9�9�9�2.�.�.�B"�"�"�*"�"�"�,*�*�*�*�*�*�*�*�*�*�*�*�"�"�"�F�F�F�B�B�B�
B�B�B�B�B�B�Br5)rjrrr,rr��re�sys�__all__�	hash_info�modulusr��infr��compile�VERBOSE�
IGNORECASEr$rr�r5r4�<module>r�s���6�5�������������������	�	�	�	�
�
�
�
��,��
�-�'���m����2�:���Z�"�-��!�!��NB�NB�NB�NB�NB�w��NB�NB�NB�NB�NBr5