PNG  IHDRQgAMA a cHRMz&u0`:pQ<bKGDgmIDATxwUﹻ& ^CX(J I@ "% (** BX +*i"]j(IH{~R)[~>h{}gy)I$Ij .I$I$ʊy@}x.: $I$Ii}VZPC)I$IF ^0ʐJ$I$Q^}{"r=OzI$gRZeC.IOvH eKX $IMpxsk.쒷/&r[޳<v| .I~)@$updYRa$I |M.e JaֶpSYR6j>h%IRز if&uJ)M$I vLi=H;7UJ,],X$I1AҒJ$ XY XzI@GNҥRT)E@;]K*Mw;#5_wOn~\ DC&$(A5 RRFkvIR}l!RytRl;~^ǷJj اy뷦BZJr&ӥ8Pjw~vnv X^(I;4R=P[3]J,]ȏ~:3?[ a&e)`e*P[4]T=Cq6R[ ~ޤrXR Հg(t_HZ-Hg M$ãmL5R uk*`%C-E6/%[t X.{8P9Z.vkXŐKjgKZHg(aK9ڦmKjѺm_ \#$5,)-  61eJ,5m| r'= &ڡd%-]J on Xm|{ RҞe $eڧY XYrԮ-a7RK6h>n$5AVڴi*ֆK)mѦtmr1p| q:흺,)Oi*ֺK)ܬ֦K-5r3>0ԔHjJئEZj,%re~/z%jVMڸmrt)3]J,T K֦OvԒgii*bKiNO~%PW0=dii2tJ9Jݕ{7"I P9JKTbu,%r"6RKU}Ij2HKZXJ,妝 XYrP ެ24c%i^IK|.H,%rb:XRl1X4Pe/`x&P8Pj28Mzsx2r\zRPz4J}yP[g=L) .Q[6RjWgp FIH*-`IMRaK9TXcq*I y[jE>cw%gLRԕiFCj-ďa`#e~I j,%r,)?[gp FI˨mnWX#>mʔ XA DZf9,nKҲzIZXJ,L#kiPz4JZF,I,`61%2s $,VOϚ2/UFJfy7K> X+6 STXIeJILzMfKm LRaK9%|4p9LwJI!`NsiazĔ)%- XMq>pk$-$Q2x#N ؎-QR}ᶦHZډ)J,l#i@yn3LN`;nڔ XuX5pF)m|^0(>BHF9(cզEerJI rg7 4I@z0\JIi䵙RR0s;$s6eJ,`n 䂦0a)S)A 1eJ,堌#635RIgpNHuTH_SԕqVe ` &S)>p;S$魁eKIuX`I4춒o}`m$1":PI<[v9^\pTJjriRŭ P{#{R2,`)e-`mgj~1ϣLKam7&U\j/3mJ,`F;M'䱀 .KR#)yhTq;pcK9(q!w?uRR,n.yw*UXj#\]ɱ(qv2=RqfB#iJmmL<]Y͙#$5 uTU7ӦXR+q,`I}qL'`6Kͷ6r,]0S$- [RKR3oiRE|nӦXR.(i:LDLTJjY%o:)6rxzҒqTJjh㞦I.$YR.ʼnGZ\ֿf:%55 I˼!6dKxm4E"mG_ s? .e*?LRfK9%q#uh$)i3ULRfK9yxm܌bj84$i1U^@Wbm4uJ,ҪA>_Ij?1v32[gLRD96oTaR׿N7%L2 NT,`)7&ƝL*꽙yp_$M2#AS,`)7$rkTA29_Iye"|/0t)$n XT2`YJ;6Jx".e<`$) PI$5V4]29SRI>~=@j]lp2`K9Jaai^" Ԋ29ORI%:XV5]JmN9]H;1UC39NI%Xe78t)a;Oi Ҙ>Xt"~G>_mn:%|~ޅ_+]$o)@ǀ{hgN;IK6G&rp)T2i୦KJuv*T=TOSV>(~D>dm,I*Ɛ:R#ۙNI%D>G.n$o;+#RR!.eU˽TRI28t)1LWϚ>IJa3oFbu&:tJ*(F7y0ZR ^p'Ii L24x| XRI%ۄ>S1]Jy[zL$adB7.eh4%%누>WETf+3IR:I3Xה)3אOۦSRO'ٺ)S}"qOr[B7ϙ.edG)^ETR"RtRݜh0}LFVӦDB^k_JDj\=LS(Iv─aTeZ%eUAM-0;~˃@i|l @S4y72>sX-vA}ϛBI!ݎߨWl*)3{'Y|iSlEڻ(5KtSI$Uv02,~ԩ~x;P4ցCrO%tyn425:KMlD ^4JRxSهF_}شJTS6uj+ﷸk$eZO%G*^V2u3EMj3k%)okI]dT)URKDS 7~m@TJR~荪fT"֛L \sM -0T KfJz+nإKr L&j()[E&I ߴ>e FW_kJR|!O:5/2跌3T-'|zX ryp0JS ~^F>-2< `*%ZFP)bSn"L :)+pʷf(pO3TMW$~>@~ū:TAIsV1}S2<%ޟM?@iT ,Eūoz%i~g|`wS(]oȤ8)$ ntu`өe`6yPl IzMI{ʣzʨ )IZ2= ld:5+請M$-ї;U>_gsY$ÁN5WzWfIZ)-yuXIfp~S*IZdt;t>KūKR|$#LcԀ+2\;kJ`]YǔM1B)UbG"IRߊ<xܾӔJ0Z='Y嵤 Leveg)$znV-º^3Ւof#0Tfk^Zs[*I꯳3{)ˬW4Ւ4 OdpbZRS|*I 55#"&-IvT&/윚Ye:i$ 9{LkuRe[I~_\ؠ%>GL$iY8 9ܕ"S`kS.IlC;Ҏ4x&>u_0JLr<J2(^$5L s=MgV ~,Iju> 7r2)^=G$1:3G< `J3~&IR% 6Tx/rIj3O< ʔ&#f_yXJiގNSz; Tx(i8%#4 ~AS+IjerIUrIj362v885+IjAhK__5X%nV%Iͳ-y|7XV2v4fzo_68"S/I-qbf; LkF)KSM$ Ms>K WNV}^`-큧32ŒVؙGdu,^^m%6~Nn&͓3ŒVZMsRpfEW%IwdǀLm[7W&bIRL@Q|)* i ImsIMmKmyV`i$G+R 0tV'!V)֏28vU7͒vHꦼtxꗞT ;S}7Mf+fIRHNZUkUx5SAJㄌ9MqμAIRi|j5)o*^'<$TwI1hEU^c_j?Е$%d`z cyf,XO IJnTgA UXRD }{H}^S,P5V2\Xx`pZ|Yk:$e ~ @nWL.j+ϝYb퇪bZ BVu)u/IJ_ 1[p.p60bC >|X91P:N\!5qUB}5a5ja `ubcVxYt1N0Zzl4]7­gKj]?4ϻ *[bg$)+À*x쳀ogO$~,5 زUS9 lq3+5mgw@np1sso Ӻ=|N6 /g(Wv7U;zωM=wk,0uTg_`_P`uz?2yI!b`kĸSo+Qx%!\οe|އԁKS-s6pu_(ֿ$i++T8=eY; צP+phxWQv*|p1. ά. XRkIQYP,drZ | B%wP|S5`~́@i޾ E;Չaw{o'Q?%iL{u D?N1BD!owPHReFZ* k_-~{E9b-~P`fE{AܶBJAFO wx6Rox5 K5=WwehS8 (JClJ~ p+Fi;ŗo+:bD#g(C"wA^ r.F8L;dzdIHUX݆ϞXg )IFqem%I4dj&ppT{'{HOx( Rk6^C٫O.)3:s(۳(Z?~ٻ89zmT"PLtw䥈5&b<8GZ-Y&K?e8,`I6e(֍xb83 `rzXj)F=l($Ij 2*(F?h(/9ik:I`m#p3MgLaKjc/U#n5S# m(^)=y=đx8ŬI[U]~SцA4p$-F i(R,7Cx;X=cI>{Km\ o(Tv2vx2qiiDJN,Ҏ!1f 5quBj1!8 rDFd(!WQl,gSkL1Bxg''՞^ǘ;pQ P(c_ IRujg(Wz bs#P­rz> k c&nB=q+ؔXn#r5)co*Ũ+G?7< |PQӣ'G`uOd>%Mctz# Ԫڞ&7CaQ~N'-P.W`Oedp03C!IZcIAMPUۀ5J<\u~+{9(FbbyAeBhOSܳ1 bÈT#ŠyDžs,`5}DC-`̞%r&ڙa87QWWp6e7 Rϫ/oY ꇅ Nܶըtc!LA T7V4Jsū I-0Pxz7QNF_iZgúWkG83 0eWr9 X]㾮݁#Jˢ C}0=3ݱtBi]_ &{{[/o[~ \q鯜00٩|cD3=4B_b RYb$óBRsf&lLX#M*C_L܄:gx)WΘsGSbuL rF$9';\4Ɍq'n[%p.Q`u hNb`eCQyQ|l_C>Lb꟟3hSb #xNxSs^ 88|Mz)}:](vbۢamŖ࿥ 0)Q7@0=?^k(*J}3ibkFn HjB׻NO z x}7p 0tfDX.lwgȔhԾŲ }6g E |LkLZteu+=q\Iv0쮑)QٵpH8/2?Σo>Jvppho~f>%bMM}\//":PTc(v9v!gոQ )UfVG+! 35{=x\2+ki,y$~A1iC6#)vC5^>+gǵ@1Hy٪7u;p psϰu/S <aʸGu'tD1ԝI<pg|6j'p:tպhX{o(7v],*}6a_ wXRk,O]Lܳ~Vo45rp"N5k;m{rZbΦ${#)`(Ŵg,;j%6j.pyYT?}-kBDc3qA`NWQū20/^AZW%NQ MI.X#P#,^Ebc&?XR tAV|Y.1!؅⨉ccww>ivl(JT~ u`ٵDm q)+Ri x/x8cyFO!/*!/&,7<.N,YDŽ&ܑQF1Bz)FPʛ?5d 6`kQձ λc؎%582Y&nD_$Je4>a?! ͨ|ȎWZSsv8 j(I&yj Jb5m?HWp=g}G3#|I,5v珿] H~R3@B[☉9Ox~oMy=J;xUVoj bUsl_35t-(ՃɼRB7U!qc+x4H_Qo֮$[GO<4`&č\GOc[.[*Af%mG/ ňM/r W/Nw~B1U3J?P&Y )`ѓZ1p]^l“W#)lWZilUQu`-m|xĐ,_ƪ|9i:_{*(3Gѧ}UoD+>m_?VPۅ15&}2|/pIOʵ> GZ9cmíتmnz)yߐbD >e}:) r|@R5qVSA10C%E_'^8cR7O;6[eKePGϦX7jb}OTGO^jn*媓7nGMC t,k31Rb (vyܴʭ!iTh8~ZYZp(qsRL ?b}cŨʊGO^!rPJO15MJ[c&~Z`"ѓޔH1C&^|Ш|rʼ,AwĴ?b5)tLU)F| &g٣O]oqSUjy(x<Ϳ3 .FSkoYg2 \_#wj{u'rQ>o;%n|F*O_L"e9umDds?.fuuQbIWz |4\0 sb;OvxOSs; G%T4gFRurj(֍ڑb uԖKDu1MK{1^ q; C=6\8FR艇!%\YÔU| 88m)֓NcLve C6z;o&X x59:q61Z(T7>C?gcļxѐ Z oo-08jہ x,`' ҔOcRlf~`jj".Nv+sM_]Zk g( UOPyεx%pUh2(@il0ݽQXxppx-NS( WO+轾 nFߢ3M<;z)FBZjciu/QoF 7R¥ ZFLF~#ȣߨ^<쩡ݛкvџ))ME>ώx4m#!-m!L;vv#~Y[đKmx9.[,UFS CVkZ +ߟrY٧IZd/ioi$%͝ب_ֶX3ܫhNU ZZgk=]=bbJS[wjU()*I =ώ:}-蹞lUj:1}MWm=̛ _ ¾,8{__m{_PVK^n3esw5ӫh#$-q=A̟> ,^I}P^J$qY~Q[ Xq9{#&T.^GVj__RKpn,b=`żY@^՝;z{paVKkQXj/)y TIc&F;FBG7wg ZZDG!x r_tƢ!}i/V=M/#nB8 XxЫ ^@CR<{䤭YCN)eKOSƟa $&g[i3.C6xrOc8TI;o hH6P&L{@q6[ Gzp^71j(l`J}]e6X☉#͕ ׈$AB1Vjh㭦IRsqFBjwQ_7Xk>y"N=MB0 ,C #o6MRc0|$)ف"1!ixY<B9mx `,tA>)5ػQ?jQ?cn>YZe Tisvh# GMމȇp:ԴVuږ8ɼH]C.5C!UV;F`mbBk LTMvPʍϤj?ԯ/Qr1NB`9s"s TYsz &9S%U԰> {<ؿSMxB|H\3@!U| k']$U+> |HHMLޢ?V9iD!-@x TIî%6Z*9X@HMW#?nN ,oe6?tQwڱ.]-y':mW0#!J82qFjH -`ѓ&M0u Uγmxϵ^-_\])@0Rt.8/?ٰCY]x}=sD3ojަЫNuS%U}ԤwHH>ڗjܷ_3gN q7[q2la*ArǓԖ+p8/RGM ]jacd(JhWko6ڎbj]i5Bj3+3!\j1UZLsLTv8HHmup<>gKMJj0@H%,W΃7R) ">c, xixј^ aܖ>H[i.UIHc U1=yW\=S*GR~)AF=`&2h`DzT󑓶J+?W+}C%P:|0H܆}-<;OC[~o.$~i}~HQ TvXΈr=b}$vizL4:ȰT|4~*!oXQR6Lk+#t/g lԁߖ[Jڶ_N$k*". xsxX7jRVbAAʯKҎU3)zSNN _'s?f)6X!%ssAkʱ>qƷb hg %n ~p1REGMHH=BJiy[<5 ǁJҖgKR*倳e~HUy)Ag,K)`Vw6bRR:qL#\rclK/$sh*$ 6덤 KԖc 3Z9=Ɣ=o>X Ώ"1 )a`SJJ6k(<c e{%kϊP+SL'TcMJWRm ŏ"w)qc ef꒵i?b7b('"2r%~HUS1\<(`1Wx9=8HY9m:X18bgD1u ~|H;K-Uep,, C1 RV.MR5άh,tWO8WC$ XRVsQS]3GJ|12 [vM :k#~tH30Rf-HYݺ-`I9%lIDTm\ S{]9gOڒMNCV\G*2JRŨ;Rҏ^ڽ̱mq1Eu?To3I)y^#jJw^Ńj^vvlB_⋌P4x>0$c>K†Aļ9s_VjTt0l#m>E-,,x,-W)سo&96RE XR.6bXw+)GAEvL)͞K4$p=Ũi_ѱOjb HY/+@θH9޼]Nԥ%n{ &zjT? Ty) s^ULlb,PiTf^<À] 62R^V7)S!nllS6~͝V}-=%* ʻ>G DnK<y&>LPy7'r=Hj 9V`[c"*^8HpcO8bnU`4JȪAƋ#1_\ XϘHPRgik(~G~0DAA_2p|J묭a2\NCr]M_0 ^T%e#vD^%xy-n}-E\3aS%yN!r_{ )sAw ڼp1pEAk~v<:`'ӭ^5 ArXOI驻T (dk)_\ PuA*BY]yB"l\ey hH*tbK)3 IKZ򹞋XjN n *n>k]X_d!ryBH ]*R 0(#'7 %es9??ښFC,ՁQPjARJ\Ρw K#jahgw;2$l*) %Xq5!U᢯6Re] |0[__64ch&_}iL8KEgҎ7 M/\`|.p,~`a=BR?xܐrQ8K XR2M8f ?`sgWS%" Ԉ 7R%$ N}?QL1|-эټwIZ%pvL3Hk>,ImgW7{E xPHx73RA @RS CC !\ȟ5IXR^ZxHл$Q[ŝ40 (>+ _C >BRt<,TrT {O/H+˟Pl6 I B)/VC<6a2~(XwV4gnXR ϱ5ǀHٻ?tw똤Eyxp{#WK qG%5],(0ӈH HZ])ג=K1j&G(FbM@)%I` XRg ʔ KZG(vP,<`[ Kn^ SJRsAʠ5xՅF`0&RbV tx:EaUE/{fi2;.IAwW8/tTxAGOoN?G}l L(n`Zv?pB8K_gI+ܗ #i?ޙ.) p$utc ~DžfՈEo3l/)I-U?aԅ^jxArA ΧX}DmZ@QLےbTXGd.^|xKHR{|ΕW_h] IJ`[G9{).y) 0X YA1]qp?p_k+J*Y@HI>^?gt.06Rn ,` ?);p pSF9ZXLBJPWjgQ|&)7! HjQt<| ؅W5 x W HIzYoVMGP Hjn`+\(dNW)F+IrS[|/a`K|ͻ0Hj{R,Q=\ (F}\WR)AgSG`IsnAR=|8$}G(vC$)s FBJ?]_u XRvύ6z ŨG[36-T9HzpW̞ú Xg큽=7CufzI$)ki^qk-) 0H*N` QZkk]/tnnsI^Gu't=7$ Z;{8^jB% IItRQS7[ϭ3 $_OQJ`7!]W"W,)Iy W AJA;KWG`IY{8k$I$^%9.^(`N|LJ%@$I}ֽp=FB*xN=gI?Q{٥4B)mw $Igc~dZ@G9K X?7)aK%݅K$IZ-`IpC U6$I\0>!9k} Xa IIS0H$I H ?1R.Чj:4~Rw@p$IrA*u}WjWFPJ$I➓/6#! LӾ+ X36x8J |+L;v$Io4301R20M I$-E}@,pS^ޟR[/s¹'0H$IKyfŸfVOπFT*a$I>He~VY/3R/)>d$I>28`Cjw,n@FU*9ttf$I~<;=/4RD~@ X-ѕzἱI$: ԍR a@b X{+Qxuq$IЛzo /~3\8ڒ4BN7$IҀj V]n18H$IYFBj3̵̚ja pp $Is/3R Ӻ-Yj+L;.0ŔI$Av? #!5"aʄj}UKmɽH$IjCYs?h$IDl843.v}m7UiI=&=0Lg0$I4: embe` eQbm0u? $IT!Sƍ'-sv)s#C0:XB2a w I$zbww{."pPzO =Ɔ\[ o($Iaw]`E).Kvi:L*#gР7[$IyGPI=@R 4yR~̮´cg I$I/<tPͽ hDgo 94Z^k盇΄8I56^W$I^0̜N?4*H`237}g+hxoq)SJ@p|` $I%>-hO0eO>\ԣNߌZD6R=K ~n($I$y3D>o4b#px2$yڪtzW~a $I~?x'BwwpH$IZݑnC㧄Pc_9sO gwJ=l1:mKB>Ab<4Lp$Ib o1ZQ@85b̍ S'F,Fe,^I$IjEdù{l4 8Ys_s Z8.x m"+{~?q,Z D!I$ϻ'|XhB)=…']M>5 rgotԎ 獽PH$IjIPhh)n#cÔqA'ug5qwU&rF|1E%I$%]!'3AFD/;Ck_`9 v!ٴtPV;x`'*bQa w I$Ix5 FC3D_~A_#O݆DvV?<qw+I$I{=Z8".#RIYyjǪ=fDl9%M,a8$I$Ywi[7ݍFe$s1ՋBVA?`]#!oz4zjLJo8$I$%@3jAa4(o ;p,,dya=F9ً[LSPH$IJYЉ+3> 5"39aZ<ñh!{TpBGkj}Sp $IlvF.F$I z< '\K*qq.f<2Y!S"-\I$IYwčjF$ w9 \ߪB.1v!Ʊ?+r:^!I$BϹB H"B;L'G[ 4U#5>੐)|#o0aڱ$I>}k&1`U#V?YsV x>{t1[I~D&(I$I/{H0fw"q"y%4 IXyE~M3 8XψL}qE$I[> nD?~sf ]o΁ cT6"?'_Ἣ $I>~.f|'!N?⟩0G KkXZE]ޡ;/&?k OۘH$IRۀwXӨ<7@PnS04aӶp.:@\IWQJ6sS%I$e5ڑv`3:x';wq_vpgHyXZ 3gЂ7{{EuԹn±}$I$8t;b|591nءQ"P6O5i }iR̈́%Q̄p!I䮢]O{H$IRϻ9s֧ a=`- aB\X0"+5"C1Hb?߮3x3&gşggl_hZ^,`5?ߎvĸ%̀M!OZC2#0x LJ0 Gw$I$I}<{Eb+y;iI,`ܚF:5ܛA8-O-|8K7s|#Z8a&><a&/VtbtLʌI$I$I$I$I$I$IRjDD%tEXtdate:create2022-05-31T04:40:26+00:00!Î%tEXtdate:modify2022-05-31T04:40:26+00:00|{2IENDB`Mini Shell

HOME


Mini Shell 1.0
DIR:/usr/include/
Upload File :
Current File : //usr/include/tgmath.h
/* Copyright (C) 1997, 1998, 1999, 2000, 2001, 2003, 2004, 2005, 2007
   Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <http://www.gnu.org/licenses/>.  */

/*
 *	ISO C99 Standard: 7.22 Type-generic math	<tgmath.h>
 */

#ifndef _TGMATH_H
#define _TGMATH_H	1

/* Include the needed headers.  */
#include <math.h>
#include <complex.h>


/* Since `complex' is currently not really implemented in most C compilers
   and if it is implemented, the implementations differ.  This makes it
   quite difficult to write a generic implementation of this header.  We
   do not try this for now and instead concentrate only on GNU CC.  Once
   we have more information support for other compilers might follow.  */

#if __GNUC_PREREQ (2, 7)

# ifdef __NO_LONG_DOUBLE_MATH
#  define __tgml(fct) fct
# else
#  define __tgml(fct) fct ## l
# endif

/* This is ugly but unless gcc gets appropriate builtins we have to do
   something like this.  Don't ask how it works.  */

/* 1 if 'type' is a floating type, 0 if 'type' is an integer type.
   Allows for _Bool.  Expands to an integer constant expression.  */
# if __GNUC_PREREQ (3, 1)
#  define __floating_type(type) \
  (__builtin_classify_type ((type) 0) == 8 \
   || (__builtin_classify_type ((type) 0) == 9 \
       && __builtin_classify_type (__real__ ((type) 0)) == 8))
# else
#  define __floating_type(type) (((type) 0.25) && ((type) 0.25 - 1))
# endif

/* The tgmath real type for T, where E is 0 if T is an integer type and
   1 for a floating type.  */
# define __tgmath_real_type_sub(T, E) \
  __typeof__ (*(0 ? (__typeof__ (0 ? (double *) 0 : (void *) (E))) 0	      \
		  : (__typeof__ (0 ? (T *) 0 : (void *) (!(E)))) 0))

/* The tgmath real type of EXPR.  */
# define __tgmath_real_type(expr) \
  __tgmath_real_type_sub (__typeof__ ((__typeof__ (expr)) 0),		      \
			  __floating_type (__typeof__ (expr)))


/* We have two kinds of generic macros: to support functions which are
   only defined on real valued parameters and those which are defined
   for complex functions as well.  */
# define __TGMATH_UNARY_REAL_ONLY(Val, Fct) \
     (__extension__ ((sizeof (Val) == sizeof (double)			      \
		      || __builtin_classify_type (Val) != 8)		      \
		     ? (__tgmath_real_type (Val)) Fct (Val)		      \
		     : (sizeof (Val) == sizeof (float))			      \
		     ? (__tgmath_real_type (Val)) Fct##f (Val)		      \
		     : (__tgmath_real_type (Val)) __tgml(Fct) (Val)))

# define __TGMATH_UNARY_REAL_RET_ONLY(Val, RetType, Fct) \
     (__extension__ ((sizeof (Val) == sizeof (double)			      \
		      || __builtin_classify_type (Val) != 8)		      \
		     ? (RetType) Fct (Val)				      \
		     : (sizeof (Val) == sizeof (float))			      \
		     ? (RetType) Fct##f (Val)				      \
		     : (RetType) __tgml(Fct) (Val)))

# define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \
     (__extension__ ((sizeof (Val1) == sizeof (double)			      \
		      || __builtin_classify_type (Val1) != 8)		      \
		     ? (__tgmath_real_type (Val1)) Fct (Val1, Val2)	      \
		     : (sizeof (Val1) == sizeof (float))		      \
		     ? (__tgmath_real_type (Val1)) Fct##f (Val1, Val2)	      \
		     : (__tgmath_real_type (Val1)) __tgml(Fct) (Val1, Val2)))

# define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \
     (__extension__ (((sizeof (Val1) > sizeof (double)			      \
		       || sizeof (Val2) > sizeof (double))		      \
		      && __builtin_classify_type ((Val1) + (Val2)) == 8)      \
		     ? (__typeof ((__tgmath_real_type (Val1)) 0		      \
				   + (__tgmath_real_type (Val2)) 0))	      \
		       __tgml(Fct) (Val1, Val2)				      \
		     : (sizeof (Val1) == sizeof (double)		      \
			|| sizeof (Val2) == sizeof (double)		      \
			|| __builtin_classify_type (Val1) != 8		      \
			|| __builtin_classify_type (Val2) != 8)		      \
		     ? (__typeof ((__tgmath_real_type (Val1)) 0		      \
				   + (__tgmath_real_type (Val2)) 0))	      \
		       Fct (Val1, Val2)					      \
		     : (__typeof ((__tgmath_real_type (Val1)) 0		      \
				   + (__tgmath_real_type (Val2)) 0))	      \
		       Fct##f (Val1, Val2)))

# define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \
     (__extension__ (((sizeof (Val1) > sizeof (double)			      \
		       || sizeof (Val2) > sizeof (double))		      \
		      && __builtin_classify_type ((Val1) + (Val2)) == 8)      \
		     ? (__typeof ((__tgmath_real_type (Val1)) 0		      \
				   + (__tgmath_real_type (Val2)) 0))	      \
		       __tgml(Fct) (Val1, Val2, Val3)			      \
		     : (sizeof (Val1) == sizeof (double)		      \
			|| sizeof (Val2) == sizeof (double)		      \
			|| __builtin_classify_type (Val1) != 8		      \
			|| __builtin_classify_type (Val2) != 8)		      \
		     ? (__typeof ((__tgmath_real_type (Val1)) 0		      \
				   + (__tgmath_real_type (Val2)) 0))	      \
		       Fct (Val1, Val2, Val3)				      \
		     : (__typeof ((__tgmath_real_type (Val1)) 0		      \
				   + (__tgmath_real_type (Val2)) 0))	      \
		       Fct##f (Val1, Val2, Val3)))

# define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \
     (__extension__ (((sizeof (Val1) > sizeof (double)			      \
		       || sizeof (Val2) > sizeof (double)		      \
		       || sizeof (Val3) > sizeof (double))		      \
		      && __builtin_classify_type ((Val1) + (Val2) + (Val3))   \
			 == 8)						      \
		     ? (__typeof ((__tgmath_real_type (Val1)) 0		      \
				   + (__tgmath_real_type (Val2)) 0	      \
				   + (__tgmath_real_type (Val3)) 0))	      \
		       __tgml(Fct) (Val1, Val2, Val3)			      \
		     : (sizeof (Val1) == sizeof (double)		      \
			|| sizeof (Val2) == sizeof (double)		      \
			|| sizeof (Val3) == sizeof (double)		      \
			|| __builtin_classify_type (Val1) != 8		      \
			|| __builtin_classify_type (Val2) != 8		      \
			|| __builtin_classify_type (Val3) != 8)		      \
		     ? (__typeof ((__tgmath_real_type (Val1)) 0		      \
				   + (__tgmath_real_type (Val2)) 0	      \
				   + (__tgmath_real_type (Val3)) 0))	      \
		       Fct (Val1, Val2, Val3)				      \
		     : (__typeof ((__tgmath_real_type (Val1)) 0		      \
				   + (__tgmath_real_type (Val2)) 0	      \
				   + (__tgmath_real_type (Val3)) 0))	      \
		       Fct##f (Val1, Val2, Val3)))

/* XXX This definition has to be changed as soon as the compiler understands
   the imaginary keyword.  */
# define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \
     (__extension__ ((sizeof (__real__ (Val)) == sizeof (double)	      \
		      || __builtin_classify_type (__real__ (Val)) != 8)	      \
		     ? ((sizeof (__real__ (Val)) == sizeof (Val))	      \
			? (__tgmath_real_type (Val)) Fct (Val)		      \
			: (__tgmath_real_type (Val)) Cfct (Val))	      \
		     : (sizeof (__real__ (Val)) == sizeof (float))	      \
		     ? ((sizeof (__real__ (Val)) == sizeof (Val))	      \
			? (__tgmath_real_type (Val)) Fct##f (Val)	      \
			: (__tgmath_real_type (Val)) Cfct##f (Val))	      \
		     : ((sizeof (__real__ (Val)) == sizeof (Val))	      \
			? (__tgmath_real_type (Val)) __tgml(Fct) (Val)	      \
			: (__tgmath_real_type (Val)) __tgml(Cfct) (Val))))

# define __TGMATH_UNARY_IMAG(Val, Cfct) \
     (__extension__ ((sizeof (__real__ (Val)) == sizeof (double)	      \
		      || __builtin_classify_type (__real__ (Val)) != 8)	      \
		     ? (__typeof__ ((__tgmath_real_type (Val)) 0	      \
				    + _Complex_I)) Cfct (Val)		      \
		     : (sizeof (__real__ (Val)) == sizeof (float))	      \
		     ? (__typeof__ ((__tgmath_real_type (Val)) 0	      \
				    + _Complex_I)) Cfct##f (Val)	      \
		     : (__typeof__ ((__tgmath_real_type (Val)) 0	      \
				    + _Complex_I)) __tgml(Cfct) (Val)))

/* XXX This definition has to be changed as soon as the compiler understands
   the imaginary keyword.  */
# define __TGMATH_UNARY_REAL_IMAG_RET_REAL(Val, Fct, Cfct) \
     (__extension__ ((sizeof (__real__ (Val)) == sizeof (double)	      \
		      || __builtin_classify_type (__real__ (Val)) != 8)	      \
		     ? ((sizeof (__real__ (Val)) == sizeof (Val))	      \
			? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
			  Fct (Val)					      \
			: (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
			  Cfct (Val))					      \
		     : (sizeof (__real__ (Val)) == sizeof (float))	      \
		     ? ((sizeof (__real__ (Val)) == sizeof (Val))	      \
			? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
			  Fct##f (Val)					      \
			: (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
			  Cfct##f (Val))				      \
		     : ((sizeof (__real__ (Val)) == sizeof (Val))	      \
			? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
			  __tgml(Fct) (Val)				      \
			: (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
			  __tgml(Cfct) (Val))))

/* XXX This definition has to be changed as soon as the compiler understands
   the imaginary keyword.  */
# define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \
     (__extension__ (((sizeof (__real__ (Val1)) > sizeof (double)	      \
		       || sizeof (__real__ (Val2)) > sizeof (double))	      \
		      && __builtin_classify_type (__real__ (Val1)	      \
						  + __real__ (Val2)) == 8)    \
		     ? ((sizeof (__real__ (Val1)) == sizeof (Val1)	      \
			 && sizeof (__real__ (Val2)) == sizeof (Val2))	      \
			? (__typeof ((__tgmath_real_type (Val1)) 0	      \
				   + (__tgmath_real_type (Val2)) 0))	      \
			  __tgml(Fct) (Val1, Val2)			      \
			: (__typeof ((__tgmath_real_type (Val1)) 0	      \
				   + (__tgmath_real_type (Val2)) 0))	      \
			  __tgml(Cfct) (Val1, Val2))			      \
		     : (sizeof (__real__ (Val1)) == sizeof (double)	      \
			|| sizeof (__real__ (Val2)) == sizeof (double)	      \
			|| __builtin_classify_type (__real__ (Val1)) != 8     \
			|| __builtin_classify_type (__real__ (Val2)) != 8)    \
		     ? ((sizeof (__real__ (Val1)) == sizeof (Val1)	      \
			 && sizeof (__real__ (Val2)) == sizeof (Val2))	      \
			? (__typeof ((__tgmath_real_type (Val1)) 0	      \
				   + (__tgmath_real_type (Val2)) 0))	      \
			  Fct (Val1, Val2)				      \
			: (__typeof ((__tgmath_real_type (Val1)) 0	      \
				   + (__tgmath_real_type (Val2)) 0))	      \
			  Cfct (Val1, Val2))				      \
		     : ((sizeof (__real__ (Val1)) == sizeof (Val1)	      \
			 && sizeof (__real__ (Val2)) == sizeof (Val2))	      \
			? (__typeof ((__tgmath_real_type (Val1)) 0	      \
				   + (__tgmath_real_type (Val2)) 0))	      \
			  Fct##f (Val1, Val2)				      \
			: (__typeof ((__tgmath_real_type (Val1)) 0	      \
				   + (__tgmath_real_type (Val2)) 0))	      \
			  Cfct##f (Val1, Val2))))
#else
# error "Unsupported compiler; you cannot use <tgmath.h>"
#endif


/* Unary functions defined for real and complex values.  */


/* Trigonometric functions.  */

/* Arc cosine of X.  */
#define acos(Val) __TGMATH_UNARY_REAL_IMAG (Val, acos, cacos)
/* Arc sine of X.  */
#define asin(Val) __TGMATH_UNARY_REAL_IMAG (Val, asin, casin)
/* Arc tangent of X.  */
#define atan(Val) __TGMATH_UNARY_REAL_IMAG (Val, atan, catan)
/* Arc tangent of Y/X.  */
#define atan2(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, atan2)

/* Cosine of X.  */
#define cos(Val) __TGMATH_UNARY_REAL_IMAG (Val, cos, ccos)
/* Sine of X.  */
#define sin(Val) __TGMATH_UNARY_REAL_IMAG (Val, sin, csin)
/* Tangent of X.  */
#define tan(Val) __TGMATH_UNARY_REAL_IMAG (Val, tan, ctan)


/* Hyperbolic functions.  */

/* Hyperbolic arc cosine of X.  */
#define acosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, acosh, cacosh)
/* Hyperbolic arc sine of X.  */
#define asinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, asinh, casinh)
/* Hyperbolic arc tangent of X.  */
#define atanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, atanh, catanh)

/* Hyperbolic cosine of X.  */
#define cosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, cosh, ccosh)
/* Hyperbolic sine of X.  */
#define sinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, sinh, csinh)
/* Hyperbolic tangent of X.  */
#define tanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, tanh, ctanh)


/* Exponential and logarithmic functions.  */

/* Exponential function of X.  */
#define exp(Val) __TGMATH_UNARY_REAL_IMAG (Val, exp, cexp)

/* Break VALUE into a normalized fraction and an integral power of 2.  */
#define frexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, frexp)

/* X times (two to the EXP power).  */
#define ldexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, ldexp)

/* Natural logarithm of X.  */
#define log(Val) __TGMATH_UNARY_REAL_IMAG (Val, log, clog)

/* Base-ten logarithm of X.  */
#ifdef __USE_GNU
# define log10(Val) __TGMATH_UNARY_REAL_IMAG (Val, log10, __clog10)
#else
# define log10(Val) __TGMATH_UNARY_REAL_ONLY (Val, log10)
#endif

/* Return exp(X) - 1.  */
#define expm1(Val) __TGMATH_UNARY_REAL_ONLY (Val, expm1)

/* Return log(1 + X).  */
#define log1p(Val) __TGMATH_UNARY_REAL_ONLY (Val, log1p)

/* Return the base 2 signed integral exponent of X.  */
#define logb(Val) __TGMATH_UNARY_REAL_ONLY (Val, logb)

/* Compute base-2 exponential of X.  */
#define exp2(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp2)

/* Compute base-2 logarithm of X.  */
#define log2(Val) __TGMATH_UNARY_REAL_ONLY (Val, log2)


/* Power functions.  */

/* Return X to the Y power.  */
#define pow(Val1, Val2) __TGMATH_BINARY_REAL_IMAG (Val1, Val2, pow, cpow)

/* Return the square root of X.  */
#define sqrt(Val) __TGMATH_UNARY_REAL_IMAG (Val, sqrt, csqrt)

/* Return `sqrt(X*X + Y*Y)'.  */
#define hypot(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, hypot)

/* Return the cube root of X.  */
#define cbrt(Val) __TGMATH_UNARY_REAL_ONLY (Val, cbrt)


/* Nearest integer, absolute value, and remainder functions.  */

/* Smallest integral value not less than X.  */
#define ceil(Val) __TGMATH_UNARY_REAL_ONLY (Val, ceil)

/* Absolute value of X.  */
#define fabs(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, fabs, cabs)

/* Largest integer not greater than X.  */
#define floor(Val) __TGMATH_UNARY_REAL_ONLY (Val, floor)

/* Floating-point modulo remainder of X/Y.  */
#define fmod(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmod)

/* Round X to integral valuein floating-point format using current
   rounding direction, but do not raise inexact exception.  */
#define nearbyint(Val) __TGMATH_UNARY_REAL_ONLY (Val, nearbyint)

/* Round X to nearest integral value, rounding halfway cases away from
   zero.  */
#define round(Val) __TGMATH_UNARY_REAL_ONLY (Val, round)

/* Round X to the integral value in floating-point format nearest but
   not larger in magnitude.  */
#define trunc(Val) __TGMATH_UNARY_REAL_ONLY (Val, trunc)

/* Compute remainder of X and Y and put in *QUO a value with sign of x/y
   and magnitude congruent `mod 2^n' to the magnitude of the integral
   quotient x/y, with n >= 3.  */
#define remquo(Val1, Val2, Val3) \
     __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY (Val1, Val2, Val3, remquo)

/* Round X to nearest integral value according to current rounding
   direction.  */
#define lrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long int, lrint)
#define llrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long long int, llrint)

/* Round X to nearest integral value, rounding halfway cases away from
   zero.  */
#define lround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long int, lround)
#define llround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long long int, llround)


/* Return X with its signed changed to Y's.  */
#define copysign(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, copysign)

/* Error and gamma functions.  */
#define erf(Val) __TGMATH_UNARY_REAL_ONLY (Val, erf)
#define erfc(Val) __TGMATH_UNARY_REAL_ONLY (Val, erfc)
#define tgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, tgamma)
#define lgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, lgamma)


/* Return the integer nearest X in the direction of the
   prevailing rounding mode.  */
#define rint(Val) __TGMATH_UNARY_REAL_ONLY (Val, rint)

/* Return X + epsilon if X < Y, X - epsilon if X > Y.  */
#define nextafter(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, nextafter)
#define nexttoward(Val1, Val2) \
     __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, nexttoward)

/* Return the remainder of integer divison X / Y with infinite precision.  */
#define remainder(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, remainder)

/* Return X times (2 to the Nth power).  */
#if defined __USE_MISC || defined __USE_XOPEN_EXTENDED
# define scalb(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, scalb)
#endif

/* Return X times (2 to the Nth power).  */
#define scalbn(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbn)

/* Return X times (2 to the Nth power).  */
#define scalbln(Val1, Val2) \
     __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbln)

/* Return the binary exponent of X, which must be nonzero.  */
#define ilogb(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, int, ilogb)


/* Return positive difference between X and Y.  */
#define fdim(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fdim)

/* Return maximum numeric value from X and Y.  */
#define fmax(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmax)

/* Return minimum numeric value from X and Y.  */
#define fmin(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmin)


/* Multiply-add function computed as a ternary operation.  */
#define fma(Val1, Val2, Val3) \
     __TGMATH_TERNARY_REAL_ONLY (Val1, Val2, Val3, fma)


/* Absolute value, conjugates, and projection.  */

/* Argument value of Z.  */
#define carg(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, carg, carg)

/* Complex conjugate of Z.  */
#define conj(Val) __TGMATH_UNARY_IMAG (Val, conj)

/* Projection of Z onto the Riemann sphere.  */
#define cproj(Val) __TGMATH_UNARY_IMAG (Val, cproj)


/* Decomposing complex values.  */

/* Imaginary part of Z.  */
#define cimag(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, cimag, cimag)

/* Real part of Z.  */
#define creal(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, creal, creal)

#endif /* tgmath.h */